Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Transcriptome Profiles of Populus euphratica upon Heat Shock stress.

Identifieur interne : 001F93 ( Main/Exploration ); précédent : 001F92; suivant : 001F94

Transcriptome Profiles of Populus euphratica upon Heat Shock stress.

Auteurs : Jinhuan Chen [République populaire de Chine] ; Weilun Yin [République populaire de Chine] ; Xinli Xia [République populaire de Chine]

Source :

RBID : pubmed:25435796

Abstract

Heat stress, which strongly affects plant performance and often results in reduced vegetative growth and yields depression, has become an increasingly serious global problem. Populus euphratica Oliv. which has been considered as a tree model for the study of plant response to abiotic stresses, could be resistant to an extremely wide environmental temperature range (-40 °C to 45 °C). Previous study is mainly focused on its gene regulation upon drought and salt stress. However, little is known about gene regulation at the global transcriptome level upon heat stress. To understand the gene network controlling heat stress in P. euphratica, a transcriptome sequencing using Illumina Hiseq 2000 was performed to generate a 10 gigabases depth for each sample in the tissue of leaf. 119,573 unigeneswere generated with an average length of 474 bp. Approximately 49,605 (41.49%) unigenes exhibited significantly different expressions between two libraries. Among these unigenes, 11,165 (9.34%) were upregulated and 38,440 (32.15%) were down regulated. Heat shock proteins classified as molecular chaperones showed a significant percentage (1.13%) in the up regulated group. Heat responsive genes, such as polyubiquitins, were over expressed in heat treated sample. GO enrichment analysis revealed that the Go terms for differentially expressed unigenes were significantly enriched in hormone-mediated signal, biological process regulation and metabolic process regulation. Our data revealed a global transcriptome picture of P. euphratica in response to heat shock. The identified potential heat stress-related transcripts can be used to infer the gene regulation networks underlying the molecular mechanisms of heat response in P. euphratica.

DOI: 10.2174/138920291505141106101835
PubMed: 25435796
PubMed Central: PMC4245693


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Transcriptome Profiles of Populus euphratica upon Heat Shock stress.</title>
<author>
<name sortKey="Chen, Jinhuan" sort="Chen, Jinhuan" uniqKey="Chen J" first="Jinhuan" last="Chen">Jinhuan Chen</name>
<affiliation wicri:level="1">
<nlm:affiliation>National Engineering Laboratory for Tree Breeding, Beijing Forestry University Beijing 100083, China ; College of Biological Sciences and technology, Beijing Forestry University Beijing 100083, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>National Engineering Laboratory for Tree Breeding, Beijing Forestry University Beijing 100083, China ; College of Biological Sciences and technology, Beijing Forestry University Beijing 100083</wicri:regionArea>
<wicri:noRegion>Beijing Forestry University Beijing 100083</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Yin, Weilun" sort="Yin, Weilun" uniqKey="Yin W" first="Weilun" last="Yin">Weilun Yin</name>
<affiliation wicri:level="1">
<nlm:affiliation>National Engineering Laboratory for Tree Breeding, Beijing Forestry University Beijing 100083, China ; College of Biological Sciences and technology, Beijing Forestry University Beijing 100083, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>National Engineering Laboratory for Tree Breeding, Beijing Forestry University Beijing 100083, China ; College of Biological Sciences and technology, Beijing Forestry University Beijing 100083</wicri:regionArea>
<wicri:noRegion>Beijing Forestry University Beijing 100083</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Xia, Xinli" sort="Xia, Xinli" uniqKey="Xia X" first="Xinli" last="Xia">Xinli Xia</name>
<affiliation wicri:level="1">
<nlm:affiliation>National Engineering Laboratory for Tree Breeding, Beijing Forestry University Beijing 100083, China ; College of Biological Sciences and technology, Beijing Forestry University Beijing 100083, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>National Engineering Laboratory for Tree Breeding, Beijing Forestry University Beijing 100083, China ; College of Biological Sciences and technology, Beijing Forestry University Beijing 100083</wicri:regionArea>
<wicri:noRegion>Beijing Forestry University Beijing 100083</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:25435796</idno>
<idno type="pmid">25435796</idno>
<idno type="doi">10.2174/138920291505141106101835</idno>
<idno type="pmc">PMC4245693</idno>
<idno type="wicri:Area/Main/Corpus">001F05</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001F05</idno>
<idno type="wicri:Area/Main/Curation">001F05</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001F05</idno>
<idno type="wicri:Area/Main/Exploration">001F05</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Transcriptome Profiles of Populus euphratica upon Heat Shock stress.</title>
<author>
<name sortKey="Chen, Jinhuan" sort="Chen, Jinhuan" uniqKey="Chen J" first="Jinhuan" last="Chen">Jinhuan Chen</name>
<affiliation wicri:level="1">
<nlm:affiliation>National Engineering Laboratory for Tree Breeding, Beijing Forestry University Beijing 100083, China ; College of Biological Sciences and technology, Beijing Forestry University Beijing 100083, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>National Engineering Laboratory for Tree Breeding, Beijing Forestry University Beijing 100083, China ; College of Biological Sciences and technology, Beijing Forestry University Beijing 100083</wicri:regionArea>
<wicri:noRegion>Beijing Forestry University Beijing 100083</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Yin, Weilun" sort="Yin, Weilun" uniqKey="Yin W" first="Weilun" last="Yin">Weilun Yin</name>
<affiliation wicri:level="1">
<nlm:affiliation>National Engineering Laboratory for Tree Breeding, Beijing Forestry University Beijing 100083, China ; College of Biological Sciences and technology, Beijing Forestry University Beijing 100083, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>National Engineering Laboratory for Tree Breeding, Beijing Forestry University Beijing 100083, China ; College of Biological Sciences and technology, Beijing Forestry University Beijing 100083</wicri:regionArea>
<wicri:noRegion>Beijing Forestry University Beijing 100083</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Xia, Xinli" sort="Xia, Xinli" uniqKey="Xia X" first="Xinli" last="Xia">Xinli Xia</name>
<affiliation wicri:level="1">
<nlm:affiliation>National Engineering Laboratory for Tree Breeding, Beijing Forestry University Beijing 100083, China ; College of Biological Sciences and technology, Beijing Forestry University Beijing 100083, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>National Engineering Laboratory for Tree Breeding, Beijing Forestry University Beijing 100083, China ; College of Biological Sciences and technology, Beijing Forestry University Beijing 100083</wicri:regionArea>
<wicri:noRegion>Beijing Forestry University Beijing 100083</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Current genomics</title>
<idno type="ISSN">1389-2029</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Heat stress, which strongly affects plant performance and often results in reduced vegetative growth and yields depression, has become an increasingly serious global problem. Populus euphratica Oliv. which has been considered as a tree model for the study of plant response to abiotic stresses, could be resistant to an extremely wide environmental temperature range (-40 °C to 45 °C). Previous study is mainly focused on its gene regulation upon drought and salt stress. However, little is known about gene regulation at the global transcriptome level upon heat stress. To understand the gene network controlling heat stress in P. euphratica, a transcriptome sequencing using Illumina Hiseq 2000 was performed to generate a 10 gigabases depth for each sample in the tissue of leaf. 119,573 unigeneswere generated with an average length of 474 bp. Approximately 49,605 (41.49%) unigenes exhibited significantly different expressions between two libraries. Among these unigenes, 11,165 (9.34%) were upregulated and 38,440 (32.15%) were down regulated. Heat shock proteins classified as molecular chaperones showed a significant percentage (1.13%) in the up regulated group. Heat responsive genes, such as polyubiquitins, were over expressed in heat treated sample. GO enrichment analysis revealed that the Go terms for differentially expressed unigenes were significantly enriched in hormone-mediated signal, biological process regulation and metabolic process regulation. Our data revealed a global transcriptome picture of P. euphratica in response to heat shock. The identified potential heat stress-related transcripts can be used to infer the gene regulation networks underlying the molecular mechanisms of heat response in P. euphratica. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">25435796</PMID>
<DateCompleted>
<Year>2014</Year>
<Month>12</Month>
<Day>01</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>30</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">1389-2029</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>15</Volume>
<Issue>5</Issue>
<PubDate>
<Year>2014</Year>
<Month>Oct</Month>
</PubDate>
</JournalIssue>
<Title>Current genomics</Title>
<ISOAbbreviation>Curr Genomics</ISOAbbreviation>
</Journal>
<ArticleTitle>Transcriptome Profiles of Populus euphratica upon Heat Shock stress.</ArticleTitle>
<Pagination>
<MedlinePgn>326-40</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.2174/138920291505141106101835</ELocationID>
<Abstract>
<AbstractText>Heat stress, which strongly affects plant performance and often results in reduced vegetative growth and yields depression, has become an increasingly serious global problem. Populus euphratica Oliv. which has been considered as a tree model for the study of plant response to abiotic stresses, could be resistant to an extremely wide environmental temperature range (-40 °C to 45 °C). Previous study is mainly focused on its gene regulation upon drought and salt stress. However, little is known about gene regulation at the global transcriptome level upon heat stress. To understand the gene network controlling heat stress in P. euphratica, a transcriptome sequencing using Illumina Hiseq 2000 was performed to generate a 10 gigabases depth for each sample in the tissue of leaf. 119,573 unigeneswere generated with an average length of 474 bp. Approximately 49,605 (41.49%) unigenes exhibited significantly different expressions between two libraries. Among these unigenes, 11,165 (9.34%) were upregulated and 38,440 (32.15%) were down regulated. Heat shock proteins classified as molecular chaperones showed a significant percentage (1.13%) in the up regulated group. Heat responsive genes, such as polyubiquitins, were over expressed in heat treated sample. GO enrichment analysis revealed that the Go terms for differentially expressed unigenes were significantly enriched in hormone-mediated signal, biological process regulation and metabolic process regulation. Our data revealed a global transcriptome picture of P. euphratica in response to heat shock. The identified potential heat stress-related transcripts can be used to infer the gene regulation networks underlying the molecular mechanisms of heat response in P. euphratica. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Chen</LastName>
<ForeName>Jinhuan</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>National Engineering Laboratory for Tree Breeding, Beijing Forestry University Beijing 100083, China ; College of Biological Sciences and technology, Beijing Forestry University Beijing 100083, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Yin</LastName>
<ForeName>Weilun</ForeName>
<Initials>W</Initials>
<AffiliationInfo>
<Affiliation>National Engineering Laboratory for Tree Breeding, Beijing Forestry University Beijing 100083, China ; College of Biological Sciences and technology, Beijing Forestry University Beijing 100083, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Xia</LastName>
<ForeName>Xinli</ForeName>
<Initials>X</Initials>
<AffiliationInfo>
<Affiliation>National Engineering Laboratory for Tree Breeding, Beijing Forestry University Beijing 100083, China ; College of Biological Sciences and technology, Beijing Forestry University Beijing 100083, China.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United Arab Emirates</Country>
<MedlineTA>Curr Genomics</MedlineTA>
<NlmUniqueID>100960527</NlmUniqueID>
<ISSNLinking>1389-2029</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">HSP</Keyword>
<Keyword MajorTopicYN="N">Heat shock</Keyword>
<Keyword MajorTopicYN="N">Polyubiquitin</Keyword>
<Keyword MajorTopicYN="N">Populus euphratica</Keyword>
<Keyword MajorTopicYN="N">Transcriptome.</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2014</Year>
<Month>07</Month>
<Day>27</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2014</Year>
<Month>09</Month>
<Day>08</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2014</Year>
<Month>09</Month>
<Day>08</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>12</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>12</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>12</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25435796</ArticleId>
<ArticleId IdType="doi">10.2174/138920291505141106101835</ArticleId>
<ArticleId IdType="pii">CG-15-326</ArticleId>
<ArticleId IdType="pmc">PMC4245693</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Int J Biochem Cell Biol. 2012 Oct;44(10):1613-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22502646</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2012 Feb;63(4):1593-608</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22291134</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2010 Oct 28;10:234</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21029438</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2013 Nov 22;441(3):630-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24177011</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013 Jun 11;8(6):e66370</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23776666</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2008 Jan;53(2):264-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17999647</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Dec 5;103(49):18822-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17030801</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Mol Sci. 2013 May 03;14(5):9643-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23644891</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2013 Jul 18;14:488</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23865740</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2013 Dec;83(6):539-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23857471</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Physiol. 2005 Mar;162(3):281-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15832680</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2014 May 01;15:326</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24884892</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2010 Jun;33(6):943-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20082667</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2013 Sep;32(9):1407-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23652820</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Integr Plant Biol. 2012 Sep;54(9):616-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22862992</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biosci. 2004 Dec;29(4):471-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15625403</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2008 Jul;5(7):621-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18516045</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2001 Mar 13;98(6):3098-103</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11248038</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2012 Nov 21;12:222</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23171377</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2014 Apr 28;14:111</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24774695</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phys Ther. 2001 Jun;81(6):1206-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11380276</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2006 Jul 1;34(Web Server issue):W293-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16845012</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Integr Plant Biol. 2012 Sep;54(9):640-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22716647</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Genet. 1998 Dec;34(5):404-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9871124</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2011 May 15;29(7):644-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21572440</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2011 Apr;31(4):452-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21427158</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2009 Jan 16;378(3):483-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19032934</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Gen Genet. 1994 May 10;243(3):358-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8190089</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2005 Sep 15;21(18):3674-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16081474</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2008 Jan;36(Database issue):D480-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18077471</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2007 Jan 12;128(1):212</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17990378</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2008 Jun 26;453(7199):1239-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18488015</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Res. 2011 Sep;21(9):1286-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21788985</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2003 Jul;132(3):1186-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12857801</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2007 Sep;65(1-2):1-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17605111</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 1990 Dec;4(12A):2202-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2269429</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2002;53:225-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12221974</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Signal Behav. 2012 Dec;7(12):1518-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23073024</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1996 Dec 13;274(5294):1900-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8943201</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2003 Jun;132(2):666-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12805596</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biotechnol. 2002 Jul 3;96(3):251-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12044553</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Parasitology. 1994 Jan;108 ( Pt 1):35-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8152853</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 1997 Oct;7(10):986-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9331369</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2003 Feb 12;19(3):368-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12584122</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Int Conf Intell Syst Mol Biol. 1999;:138-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10786296</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2003 Mar 22;19(5):651-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12651724</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013 Jun 10;8(6):e65411</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23762363</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2010 Feb;20(2):265-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20019144</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
</list>
<tree>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Chen, Jinhuan" sort="Chen, Jinhuan" uniqKey="Chen J" first="Jinhuan" last="Chen">Jinhuan Chen</name>
</noRegion>
<name sortKey="Xia, Xinli" sort="Xia, Xinli" uniqKey="Xia X" first="Xinli" last="Xia">Xinli Xia</name>
<name sortKey="Yin, Weilun" sort="Yin, Weilun" uniqKey="Yin W" first="Weilun" last="Yin">Weilun Yin</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001F93 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001F93 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:25435796
   |texte=   Transcriptome Profiles of Populus euphratica upon Heat Shock stress.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:25435796" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020